逻辑回归算法
功能介绍
- 经典逻辑回归是一个二分类算法
- 逻辑回归组件支持稀疏、稠密两种数据格式
- 支持带样本权重的训练
参数说明
名称 |
中文名称 |
描述 |
类型 |
是否必须? |
默认值 |
optimMethod |
优化方法 |
优化问题求解时选择的优化方法 |
String |
|
null |
l1 |
L1 正则化系数 |
L1 正则化系数,默认为0。 |
Double |
|
0.0 |
l2 |
正则化系数 |
L2 正则化系数,默认为0。 |
Double |
|
0.0 |
withIntercept |
是否有常数项 |
是否有常数项,默认true |
Boolean |
|
true |
maxIter |
最大迭代步数 |
最大迭代步数,默认为 100 |
Integer |
|
100 |
epsilon |
收敛阈值 |
迭代方法的终止判断阈值,默认值为 1.0e-6 |
Double |
|
1.0E-6 |
featureCols |
特征列名数组 |
特征列名数组,默认全选 |
String[] |
|
null |
labelCol |
标签列名 |
输入表中的标签列名 |
String |
✓ |
|
weightCol |
权重列名 |
权重列对应的列名 |
String |
|
null |
vectorCol |
向量列名 |
向量列对应的列名,默认值是null |
String |
|
null |
standardization |
是否正则化 |
是否对训练数据做正则化,默认true |
Boolean |
|
true |
|
脚本示例
运行脚本
import numpy as np
import pandas as pd
data = np.array([
[2, 1, 1],
[3, 2, 1],
[4, 3, 2],
[2, 4, 1],
[2, 2, 1],
[4, 3, 2],
[1, 2, 1],
[5, 3, 2]])
df = pd.DataFrame({"f0": data[:, 0],
"f1": data[:, 1],
"label": data[:, 2]})
input = dataframeToOperator(df, schemaStr='f0 int, f1 int, label int', op_type='batch')
# load data
dataTest = input
colnames = ["f0","f1"]
lr = LogisticRegressionTrainBatchOp().setFeatureCols(colnames).setLabelCol("label")
model = input.link(lr)
predictor = LogisticRegressionPredictBatchOp().setPredictionCol("pred")
predictor.linkFrom(model, dataTest).print()
运行结果
f0 |
f1 |
label |
pred |
2 |
1 |
1 |
1 |
3 |
2 |
1 |
1 |
4 |
3 |
2 |
2 |
2 |
4 |
1 |
1 |
2 |
2 |
1 |
1 |
4 |
3 |
2 |
2 |
1 |
2 |
1 |
1 |
5 |
3 |
2 |
2 |
备注
- 该组件的输入为训练数据,输出为逻辑回归模型。
- 参数数据库的使用方式可以覆盖多个参数的使用方式。