- 功能介绍
- 参数说明
- 脚本示例
- 脚本代码
- 脚本运行结果
功能介绍
高斯混合模型聚类
参数说明
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 默认值 | |
---|---|---|---|---|---|---|
tol | “收敛容差” | “收敛容差” | Double | 0.01 | ||
vectorCol | 向量列名 | 向量列对应的列名 | String | ✓ | ||
k | 聚类中心点数量 | 聚类中心点数量 | Integer | 2 | ||
maxIter | 最大迭代步数 | 最大迭代步数,默认为 100 | Integer | 100 | ||
vectorCol | 向量列名 | 向量列对应的列名 | String | ✓ | ||
predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | ||
predictionDetailCol | 预测详细信息列名 | 预测详细信息列名 | String | |||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null |
脚本示例
脚本代码
data = np.array([
["-0.6264538 0.1836433"],
["-0.8356286 1.5952808"],
["0.3295078 -0.8204684"],
["0.4874291 0.7383247"],
["0.5757814 -0.3053884"],
["1.5117812 0.3898432"],
["-0.6212406 -2.2146999"],
["11.1249309 9.9550664"],
["9.9838097 10.9438362"],
["10.8212212 10.5939013"],
["10.9189774 10.7821363"],
["10.0745650 8.0106483"],
["10.6198257 9.9438713"],
["9.8442045 8.5292476"],
["9.5218499 10.4179416"],
])
df_data = pd.DataFrame({
"features": data[:, 0],
})
data = dataframeToOperator(df_data, schemaStr='features string', op_type='batch')
gmm = GaussianMixture() \
.setPredictionCol("cluster_id") \
.setVectorCol("features") \
.setPredictionDetailCol("cluster_detail")
.setTol(0.)
gmm.fit(data).transform(data).print()
脚本运行结果
features cluster_id cluster_detail
0 -0.6264538 0.1836433 0 1.0 4.275273913994647E-92
1 -0.8356286 1.5952808 0 1.0 1.0260377730322135E-92
2 0.3295078 -0.8204684 0 1.0 1.0970173367582936E-80
3 0.4874291 0.7383247 0 1.0 3.30217313232611E-75
4 0.5757814 -0.3053884 0 1.0 3.163811360527691E-76
5 1.5117812 0.3898432 0 1.0 2.1018052308786076E-62
6 -0.6212406 -2.2146999 0 1.0 6.772270268625197E-97
7 11.1249309 9.9550664 1 3.1567838012477083E-56 1.0
8 9.9838097 10.9438362 1 1.9024447346702333E-51 1.0
9 10.8212212 10.5939013 1 2.8009730987296404E-56 1.0
10 10.9189774 10.7821363 1 1.7209132744891575E-57 1.0
11 10.0745650 8.0106483 1 2.864269663513225E-43 1.0
12 10.6198257 9.9438713 1 5.77327399194046E-53 1.0
13 9.8442045 8.5292476 1 2.5273123050926845E-43 1.0
14 9.5218499 10.4179416 1 1.7314580596765865E-46 1.0