- 功能介绍
- 参数说明
- 脚本示例
- 脚本运行结果
- 脚本运行结果
功能介绍
把数据中的缺失值补上
参数说明
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 默认值 | |
---|---|---|---|---|---|---|
outputCols | 输出结果列列名数组 | 输出结果列列名数组,可选,默认null | String[] | null |
脚本示例
data = np.array([
["a", 10.0, 100],
["b", -2.5, 9],
["c", 100.2, 1],
["d", -99.9, 100],
["a", 1.4, 1],
["b", -2.2, 9],
["c", 100.9, 1],
[None, None, None]
])
colnames = ["col1", "col2", "col3"]
selectedColNames = ["col2", "col3"]
df = pd.DataFrame({"col1": data[:, 0], "col2": data[:, 1], "col3": data[:, 2]})
inOp = dataframeToOperator(df, schemaStr='col1 string, col2 double, col3 long', op_type='batch')
# train
trainOp = ImputerTrainBatchOp()\
.setSelectedCols(selectedColNames)
trainOp.linkFrom(inOp)
# batch predict
predictOp = ImputerPredictBatchOp()
predictOp.linkFrom(trainOp, inOp).print()
# stream predict
sinOp = dataframeToOperator(df, schemaStr='col1 string, col2 double, col3 long', op_type='stream')
predictStreamOp = MaxAbsScalerPredictStreamOp(trainOp)
predictStreamOp.linkFrom(sinOp).print()
StreamOperator.execute()
脚本运行结果
col1 col2 col3
0 a 10.000000 100
1 b -2.500000 9
2 c 100.200000 1
3 d -99.900000 100
4 a 1.400000 1
5 b -2.200000 9
6 c 100.900000 1
7 None 15.414286 31