- 功能介绍
- 参数说明
- 脚本示例
- 运行脚本
- 脚本结果
功能介绍
gbdt(Gradient Boosting Decision Trees)二分类,是经典的基于boosting的有监督学习模型,可以用来解决二分类问题
支持连续特征和离散特征
支持数据采样和特征采样
目标分类必须是两个
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 默认值 | |
|---|---|---|---|---|---|---|
| predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | ||
| predictionDetailCol | 预测详细信息列名 | 预测详细信息列名 | String | |||
| reservedCols | 算法保留列名 | 算法保留列 | String[] | null |
脚本示例
运行脚本
import numpy as npimport pandas as pdfrom pyalink.alink import *def exampleData():return np.array([[1.0, "A", 0, 0, 0],[2.0, "B", 1, 1, 0],[3.0, "C", 2, 2, 1],[4.0, "D", 3, 3, 1]])def sourceFrame():data = exampleData()return pd.DataFrame({"f0": data[:, 0],"f1": data[:, 1],"f2": data[:, 2],"f3": data[:, 3],"label": data[:, 4]})def batchSource():return dataframeToOperator(sourceFrame(),schemaStr='''f0 double,f1 string,f2 int,f3 int,label int''',op_type='batch')def streamSource():return dataframeToOperator(sourceFrame(),schemaStr='''f0 double,f1 string,f2 int,f3 int,label int''',op_type='stream')trainOp = (GbdtTrainBatchOp().setLearningRate(1.0).setNumTrees(3).setMinSamplesPerLeaf(1).setLabelCol('label').setFeatureCols(['f0', 'f1', 'f2', 'f3']))predictBatchOp = (GbdtPredictBatchOp().setPredictionDetailCol('pred_detail').setPredictionCol('pred'))(predictBatchOp.linkFrom(batchSource().link(trainOp),batchSource()).print())predictStreamOp = (GbdtPredictStreamOp(batchSource().link(trainOp)).setPredictionDetailCol('pred_detail').setPredictionCol('pred'))(predictStreamOp.linkFrom(streamSource()).print())StreamOperator.execute()
脚本结果
批预测结果
f0 f1 f2 f3 label pred pred_detail0 1.0 A 0 0 0 0 {"0":0.9849144951094335,"1":0.015085504890566462}1 2.0 B 1 1 0 0 {"0":0.9849144951094335,"1":0.015085504890566462}2 3.0 C 2 2 1 1 {"0":0.01508550489056637,"1":0.9849144951094336}3 4.0 D 3 3 1 1 {"0":0.01508550489056637,"1":0.9849144951094336}
