- 一、题目
- 二、解题思路
- 三、解题代码
一、题目
Given a string S and a string T, count the number of distinct subsequences of T in S.A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie,
"ACE"
is a subsequence of"ABCDE"
while"AEC"
is not).Here is an example:
S =
"rabbbit"
, T ="rabbit"
Return
3
.
给定两个字符串S和T,求S有多少个不同的子串与T相同。S的子串定义为在S中任意去掉0个或者多个字符形成的串。
二、解题思路
动态规划,设dp[i][j]
是从字符串S[0…i]中删除几个字符得到字符串T[0…j]的不同的删除方法种类,动态规划方程如下
如果S[i] = T[j],
dp[i][j] = dp[i-1][j-1]+dp[i-1
][j]如果S[i] 不等于 T[j],
dp[i][j] = dp[i-1][j]
初始条件:当T为空字符串时,从任意的S删除几个字符得到T的方法为1
dp[0][0] = 1
; // T和S都是空串.dp[1 ... S.length() - 1][0] = 1;
// T是空串,S只有一种子序列匹配。dp[0][1 ... T.length() - 1] = 0;
// S是空串,T不是空串,S没有子序列匹配。
三、解题代码
public int numDistincts(String S, String T)
{
int[][] table = new int[S.length() + 1][T.length() + 1];
for (int i = 0; i < S.length(); i++)
table[i][0] = 1;
for (int i = 1; i <= S.length(); i++) {
for (int j = 1; j <= T.length(); j++) {
if (S.charAt(i - 1) == T.charAt(j - 1)) {
table[i][j] += table[i - 1][j] + table[i - 1][j - 1];
} else {
table[i][j] += table[i - 1][j];
}
}
}
return table[S.length()][T.length()];
}