• 一、Android中的缓存策略
  • 二、LruCache的使用
    • 1.LruCache的介绍
    • 2.LruCache的使用
    • 三、LruCache的实现原理

    一、Android中的缓存策略

    一般来说,缓存策略主要包含缓存的添加、获取和删除这三类操作。如何添加和获取缓存这个比较好理解,那么为什么还要删除缓存呢?这是因为不管是内存缓存还是硬盘缓存,它们的缓存大小都是有限的。当缓存满了之后,再想其添加缓存,这个时候就需要删除一些旧的缓存并添加新的缓存。

    因此LRU(Least Recently Used)缓存算法便应运而生,LRU是最近最少使用的算法,它的核心思想是当缓存满时,会优先淘汰那些最近最少使用的缓存对象。采用LRU算法的缓存有两种:LrhCache和DisLruCache,分别用于实现内存缓存和硬盘缓存,其核心思想都是LRU缓存算法。

    二、LruCache的使用

    LruCache是Android 3.1所提供的一个缓存类,所以在Android中可以直接使用LruCache实现内存缓存。而DisLruCache目前在Android 还不是Android SDK的一部分,但Android官方文档推荐使用该算法来实现硬盘缓存。

    1.LruCache的介绍

    LruCache是个泛型类,主要算法原理是把最近使用的对象用强引用(即我们平常使用的对象引用方式)存储在 LinkedHashMap 中。当缓存满时,把最近最少使用的对象从内存中移除,并提供了get和put方法来完成缓存的获取和添加操作。

    2.LruCache的使用

    LruCache的使用非常简单,我们就已图片缓存为例。

    1. int maxMemory = (int) (Runtime.getRuntime().totalMemory() / 1024);
    2. int cacheSize = maxMemory / 8;
    3. mMemoryCache = new LruCache<String, Bitmap>(cacheSize) {
    4. @Override
    5. protected int sizeOf(String key, Bitmap value) {
    6. return value.getRowBytes() * value.getHeight() / 1024;
    7. }
    8. };

    ①设置LruCache缓存的大小,一般为当前进程可用容量的1/8。


    ②重写sizeOf方法,计算出要缓存的每张图片的大小。

    注意: 缓存的总容量和每个缓存对象的大小所用单位要一致。

    三、LruCache的实现原理

    LruCache的核心思想很好理解,就是要维护一个缓存对象列表,其中对象列表的排列方式是按照访问顺序实现的,即一直没访问的对象,将放在队尾,即将被淘汰。而最近访问的对象将放在队头,最后被淘汰。

    如下图所示:

    img

    那么这个队列到底是由谁来维护的,前面已经介绍了是由LinkedHashMap来维护。

    而LinkedHashMap是由数组+双向链表的数据结构来实现的。其中双向链表的结构可以实现访问顺序和插入顺序,使得LinkedHashMap中的对按照一定顺序排列起来。

    通过下面构造函数来指定LinkedHashMap中双向链表的结构是访问顺序还是插入顺序。

    1. public LinkedHashMap(int initialCapacity,
    2. float loadFactor,
    3. boolean accessOrder) {
    4. super(initialCapacity, loadFactor);
    5. this.accessOrder = accessOrder;
    6. }

    其中accessOrder设置为true则为访问顺序,为false,则为插入顺序。

    以具体例子解释:
    当设置为true时

    1. public static final void main(String[] args) {
    2. LinkedHashMap<Integer, Integer> map = new LinkedHashMap<>(0, 0.75f, true);
    3. map.put(0, 0);
    4. map.put(1, 1);
    5. map.put(2, 2);
    6. map.put(3, 3);
    7. map.put(4, 4);
    8. map.put(5, 5);
    9. map.put(6, 6);
    10. map.get(1);
    11. map.get(2);
    12. for (Map.Entry<Integer, Integer> entry : map.entrySet()) {
    13. System.out.println(entry.getKey() + ":" + entry.getValue());
    14. }
    15. }

    输出结果:

    0:0

    3:3

    4:4

    5:5

    6:6

    1:1

    2:2

    即最近访问的最后输出,那么这就正好满足的LRU缓存算法的思想。可见LruCache巧妙实现,就是利用了LinkedHashMap的这种数据结构。

    下面我们在LruCache源码中具体看看,怎么应用LinkedHashMap来实现缓存的添加,获得和删除的。

    1. public LruCache(int maxSize) {
    2. if (maxSize <= 0) {
    3. throw new IllegalArgumentException("maxSize <= 0");
    4. }
    5. this.maxSize = maxSize;
    6. this.map = new LinkedHashMap<K, V>(0, 0.75f, true);
    7. }

    从LruCache的构造函数中可以看到正是用了LinkedHashMap的访问顺序。

    put()方法

    1. public final V put(K key, V value) {
    2. //不可为空,否则抛出异常
    3. if (key == null || value == null) {
    4. throw new NullPointerException("key == null || value == null");
    5. }
    6. V previous;
    7. synchronized (this) {
    8. //插入的缓存对象值加1
    9. putCount++;
    10. //增加已有缓存的大小
    11. size += safeSizeOf(key, value);
    12. //向map中加入缓存对象
    13. previous = map.put(key, value);
    14. //如果已有缓存对象,则缓存大小恢复到之前
    15. if (previous != null) {
    16. size -= safeSizeOf(key, previous);
    17. }
    18. }
    19. //entryRemoved()是个空方法,可以自行实现
    20. if (previous != null) {
    21. entryRemoved(false, key, previous, value);
    22. }
    23. //调整缓存大小(关键方法)
    24. trimToSize(maxSize);
    25. return previous;
    26. }

    可以看到put()方法并没有什么难点,重要的就是在添加过缓存对象后,调用 trimToSize()方法,来判断缓存是否已满,如果满了就要删除近期最少使用的算法。

    trimToSize()方法

    1. public void trimToSize(int maxSize) {
    2. //死循环
    3. while (true) {
    4. K key;
    5. V value;
    6. synchronized (this) {
    7. //如果map为空并且缓存size不等于0或者缓存size小于0,抛出异常
    8. if (size < 0 || (map.isEmpty() && size != 0)) {
    9. throw new IllegalStateException(getClass().getName()
    10. + ".sizeOf() is reporting inconsistent results!");
    11. }
    12. //如果缓存大小size小于最大缓存,或者map为空,不需要再删除缓存对象,跳出循环
    13. if (size <= maxSize || map.isEmpty()) {
    14. break;
    15. }
    16. //迭代器获取第一个对象,即队尾的元素,近期最少访问的元素
    17. Map.Entry<K, V> toEvict = map.entrySet().iterator().next();
    18. key = toEvict.getKey();
    19. value = toEvict.getValue();
    20. //删除该对象,并更新缓存大小
    21. map.remove(key);
    22. size -= safeSizeOf(key, value);
    23. evictionCount++;
    24. }
    25. entryRemoved(true, key, value, null);
    26. }
    27. }

    trimToSize()方法不断地删除LinkedHashMap中队尾的元素,即近期最少访问的,直到缓存大小小于最大值。

    当调用LruCache的get()方法获取集合中的缓存对象时,就代表访问了一次该元素,将会更新队列,保持整个队列是按照访问顺序排序。这个更新过程就是在LinkedHashMap中的get()方法中完成的。

    先看LruCache的get()方法

    get()方法

    1. public final V get(K key) {
    2. //key为空抛出异常
    3. if (key == null) {
    4. throw new NullPointerException("key == null");
    5. }
    6. V mapValue;
    7. synchronized (this) {
    8. //获取对应的缓存对象
    9. //get()方法会实现将访问的元素更新到队列头部的功能
    10. mapValue = map.get(key);
    11. if (mapValue != null) {
    12. hitCount++;
    13. return mapValue;
    14. }
    15. missCount++;
    16. }

    其中LinkedHashMap的get()方法如下:

    1. public V get(Object key) {
    2. LinkedHashMapEntry<K,V> e = (LinkedHashMapEntry<K,V>)getEntry(key);
    3. if (e == null)
    4. return null;
    5. //实现排序的关键方法
    6. e.recordAccess(this);
    7. return e.value;
    8. }

    调用recordAccess()方法如下:

    1. void recordAccess(HashMap<K,V> m) {
    2. LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m;
    3. //判断是否是访问排序
    4. if (lm.accessOrder) {
    5. lm.modCount++;
    6. //删除此元素
    7. remove();
    8. //将此元素移动到队列的头部
    9. addBefore(lm.header);
    10. }
    11. }

    由此可见LruCache中维护了一个集合LinkedHashMap,该LinkedHashMap是以访问顺序排序的。当调用put()方法时,就会在结合中添加元素,并调用trimToSize()判断缓存是否已满,如果满了就用LinkedHashMap的迭代器删除队尾元素,即近期最少访问的元素。当调用get()方法访问缓存对象时,就会调用LinkedHashMap的get()方法获得对应集合元素,同时会更新该元素到队头。