第 2 章 Python 语法基础,IPython 和 Jupyter Notebooks

当我在2011年和2012年写作本书的第一版时,可用的学习Python数据分析的资源很少。这部分上是一个鸡和蛋的问题:我们现在使用的库,比如pandas、scikit-learn和statsmodels,那时相对来说并不成熟。2017年,数据科学、数据分析和机器学习的资源已经很多,原来通用的科学计算拓展到了计算机科学家、物理学家和其它研究领域的工作人员。学习Python和成为软件工程师的优秀书籍也有了。

因为这本书是专注于Python数据处理的,对于一些Python的数据结构和库的特性难免不足。因此,本章和第3章的内容只够你能学习本书后面的内容。

在我来看,没有必要为了数据分析而去精通Python。我鼓励你使用IPython shell和Jupyter试验示例代码,并学习不同类型、函数和方法的文档。虽然我已尽力让本书内容循序渐进,但读者偶尔仍会碰到没有之前介绍过的内容。

本书大部分内容关注的是基于表格的分析和处理大规模数据集的数据准备工具。为了使用这些工具,必须首先将混乱的数据规整为整洁的表格(或结构化)形式。幸好,Python是一个理想的语言,可以快速整理数据。Python使用得越熟练,越容易准备新数据集以进行分析。

最好在IPython和Jupyter中亲自尝试本书中使用的工具。当你学会了如何启动Ipython和Jupyter,我建议你跟随示例代码进行练习。与任何键盘驱动的操作环境一样,记住常见的命令也是学习曲线的一部分。

笔记:本章没有介绍Python的某些概念,如类和面向对象编程,你可能会发现它们在Python数据分析中很有用。 为了加强Python知识,我建议你学习官方Python教程,https://docs.python.org/3/,或是通用的Python教程书籍,比如:

  • Python Cookbook,第3版,David Beazley和Brian K. Jones著(O’Reilly)
  • 流畅的Python,Luciano Ramalho著 (O’Reilly)
  • 高效的Python,Brett Slatkin著 (Pearson)
  • 2.1 Python解释器
  • 2.2 IPython基础
  • 2.3 Python语法基础